§4.3 Continuous functions
Let $f: D \subset \mathbb{R} \rightarrow \mathbb{R}$.
Definition 4.4:
f is "continuous on D ", if f is continuous at each point $x_{0} \in D$.
Example 4.5:
i) Is $f: D \rightarrow \mathbb{R}$ continuous, $U \subset D$, then the restricted function $f l_{u}: u \rightarrow \mathbb{R}$ is also continuous.
ii) According to Example 4.3 iv) the piecewise constant function

$$
g=a X_{(-\infty, 0)}+b X_{(0, \infty)}: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}
$$

is continuous (an $\mathbb{R} \backslash\{0\}$; the domain of definition is very important!)

Remark 4.2:
The last example demonstrates an important aspect of continuity. The function g is continuous although the graph of g makes a jump at $x_{0}=0$:
The "jump point" $x_{0}=0$ does not belong to the domain of definition of g.
For monotonic functions, we have the following
Proposition 4.2:
Let $-\infty \leqslant a<b \leqslant \infty$, and $f:(a, b) \rightarrow \mathbb{R}$ be "monotonically increasing", that is,

$$
\forall x, y \in(a, b): x \leq y \Rightarrow f(x) \leq f(y)
$$

Then we have for each $x_{0} \in(a, b)$ the
"left-and right-sided limits"

$$
f\left(x_{0}^{+}\right):=\lim _{x \rightarrow x_{0}, x>x_{0}} f(x), f\left(x_{0}^{-}\right):=\lim _{\substack{x \rightarrow x_{0}, x<x_{0}}} f(x),
$$

and f is continuous at x_{0} if and only if $f\left(x_{0}^{-}\right)=f\left(x_{0}^{+}\right)=f\left(x_{0}\right)$.

Analogously, if it is monotonically decreasing.
Proof:
Let $x_{0} \in(a, b)$. If $\left(x_{k}\right)_{k \in \mathbb{N}} \subset(a, b)$ with

$$
x_{k}<x_{k+1} \longrightarrow x_{0}(k \longrightarrow \infty)
$$

then the sequence $\left(f\left(x_{k}\right)\right)_{k \in \mathbb{N}}$ is monotonically increasing and bounded. Then

Prop. $3.8 \Rightarrow \lim _{k \rightarrow \infty} f\left(x_{k}\right):=s$ exists
We show that the limit is independent from the chosen sequence.
Claim: $\quad s=\lim _{\substack{x \rightarrow x_{0}, x<x_{0}}} f(x)=f\left(x_{0}^{-}\right)$
Proof:
Let $\left(y_{k}\right)_{k \in \mathbb{N}} \subset(a, b)$ with $y_{k} \rightarrow x_{0}(k \rightarrow \infty)$, where $y_{k}<x_{0}, k \in \mathbb{N}$. Far $\varepsilon>0$ there exists $k_{0} \in \mathbb{N}$ s.th.

$$
\forall k \geqslant k_{0}: s-\varepsilon<f\left(x_{k}\right) \leqslant s
$$

As $x_{k_{0}}<x_{0}, y_{k} \rightarrow x_{0}(k \rightarrow \infty)$, there is $k_{1} \in \mathbb{N}$ s.th. $\quad \forall \quad k \geqslant k_{1}: x_{k_{0}}<y_{k}<x_{0}$

Together with the monotony of f we then get

$$
\forall \quad k \geqslant k_{1}: s-\varepsilon<f\left(x_{k_{0}}\right) \leqslant f\left(y_{k}\right) \leqslant \lim _{k \rightarrow \infty} f\left(x_{k}\right)=S_{;}
$$

That is,

$$
f^{\prime}\left(y_{k}\right) \longrightarrow s(k \rightarrow \infty)
$$

Analogously, $f\left(x_{0}^{+}\right)$exists. Aparently, we have

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) \Longleftrightarrow f\left(x_{0}^{-}\right)=f\left(x_{0}^{+}\right)=f\left(x_{0}\right)
$$

Proposition 4.3:
Let $f: \Omega \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Then their "composition" $g \circ f: \Omega \rightarrow \mathbb{R}$ is also continuous.
Proof:
Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in Ω and $\lim _{n \rightarrow \infty} x_{n}=a$.
As f is continuous at a we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)
$$

Then $y_{n}:=f\left(x_{n}\right) \in \mathbb{R}$ and $\lim _{n \rightarrow \infty} y_{n}=b$.
As g is continuous at $y=b$, we have

$$
\lim _{n \rightarrow \infty} g\left(y_{n}\right)=g(b)
$$

and therefore

$$
\begin{aligned}
\lim _{n \rightarrow \infty}(g \circ f)\left(x_{n}\right) & =\lim _{n \rightarrow \infty} g\left(f\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} g\left(y_{n}\right)=b \\
& =g(f(a))=(g \circ f)(a)
\end{aligned}
$$

Proposition 4.4:
Let $f_{1} g: \Omega \rightarrow \mathbb{R}$ be continuous functions and let $\lambda \in \mathbb{R}$. Then the functions $f+g: \Omega \rightarrow \mathbb{R}, \lambda f: \Omega \rightarrow \mathbb{R}, f g: \Omega \rightarrow \mathbb{R}$ are also continuous. Furthermore, $\frac{f}{g}: \Omega^{\prime} \rightarrow \mathbb{R}$ is continuous for $\Omega^{\prime}=\{x \in \Omega \mid g(x) \neq 0\}$
Proof:
Follows from Prop. 3.3
§4.4 Limits at infinity and infinite limits
Let's look at the following function

$$
f(x)=\frac{x^{2}-1}{x^{2}+1}
$$

as x becomes large. The graph of f has the following shape

As x gets larger, $f(x)$ approaches the value 1. Indeed, we have

$$
\lim _{x \rightarrow \infty}\left(\frac{x^{2}-1}{x^{2}+1}\right)=\lim _{x \rightarrow \infty}\left(\frac{x^{x}\left(1-1 / x^{2}\right)}{x^{2}\left(1+1 / x^{2}\right)}\right)
$$

and $\left|\frac{1-\frac{1}{x^{2}}}{1+\frac{1}{x^{2}}}-1\right|<\Sigma$ is equivalent to

$$
\left|1-\frac{1}{x^{2}}-1-\frac{1}{x^{2}}\right|<\varepsilon\left(1+\frac{1}{x^{2}}\right)=\widetilde{\Sigma}>\varepsilon
$$

Therefore, we have to show:

$$
\exists x_{0} \in \mathbb{R} \text { s.t. } \forall x \geq x_{0}: \frac{2}{x^{2}}<\varepsilon
$$

Choose $x_{0}=\sqrt{\frac{2}{\varepsilon}}$
This is symbolically written as

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}+1}=1
$$

In general, we use the notation

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

to indicate that $f(x)$ approaches L for large x.
Definition 4.5:
Let f be a function defined on some interval $[a, \infty)$. Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that $\forall \sum>0 \exists x_{0} \in \mathbb{R}$ st.

$$
\forall \quad x \geq x_{0}:|L-f(x)|<\varepsilon
$$

We say: "the limit of $f(x)$, as x approaches infinity, is L "
There are many ways in which L can be approached

Going back to our original function, we also approach a limit when x decreases through negative values:

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}-1}{x^{2}+1}=1
$$

The general definition is analogous to 4.5

Definition 4.6:
The line $y=L$ is called "horizontal asymptote" of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

Example 4.6 (Infinite limits):
Find $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ if it exists
solution: consider the sequence

$$
x_{n}=\frac{1}{n}, n \in \mathbb{N}
$$

Then $\forall M \in \mathbb{N}, M>0 \exists \quad 0<N \in \mathbb{N}$ st.

$$
\frac{1}{x_{n}^{2}}=\frac{1}{\left(\frac{1}{n}\right)^{2}}=n^{2}>M \quad \forall n \geq N
$$

Thus the function $\frac{1}{x^{2}}$ grows without bound as x approaches 0 , so $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}\right)$ does not exist.

We use the notation: $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$ The axis $x=0$ is called "vertical asymptote".
§4.5 Intermediate value theorem and applications
Proposition 4.5:
Let $-\infty<a<b<\infty$, and let $f:[a, b] \rightarrow \mathbb{R}$ be continuous, $f(a) \leq f(b)$. Then for each $y \in[f(a), f(b)]$ there exists $a x \in[a, b]$ with $f(x)=y$

Proof:
Define $a_{1}=a_{1}, b_{1}=b$. Set

$$
\begin{array}{ll}
a_{2}=a=a_{1}, & b_{2}=\frac{a+b}{2} \\
a_{2}=\frac{a+b}{2}, & b_{2}=b_{1}
\end{array} \quad \text { if } f\left(\frac{a+b}{2}\right) \geq y, ~ f\left(\frac{a+b}{2}\right)<y, ~ l
$$

such that $f\left(a_{2}\right)<y \leq f\left(b_{2}\right)$ and $\left|a_{2}-b_{2}\right|=\frac{|a-b|}{2}$ More generally, let a_{1}, \ldots, a_{k} be already given
s.t. $a_{1} \leq \cdots \leq a_{k} \leq b_{k} \leq \cdots \leq b_{1}$
and $f\left(a_{k}\right)<y<f\left(b_{k}\right), \quad\left|a_{k}-b_{k}\right|=|a-b| 2^{1-k}$
Let $c=\frac{a_{k}+b_{k}}{2}$. If $f(c) \geq y_{1}$ set

$$
a_{k+1}=a_{k}, \quad b_{k+1}=c
$$

if $f(c)<y$, set

$$
a_{k+1}=c_{1} \quad b_{k+1}=b_{k}
$$

We obtain in each case $a_{k+1} \geq a_{k}, b_{k+1} \leq b_{k}$ with $f\left(a_{k+1}\right)<y \leq f\left(b_{k+1}\right)$ and

$$
\left|a_{k+1}-b_{k+1}\right|=\frac{1}{2}\left|a_{k}-b_{k}\right|=2^{-k}|a-b|
$$

The sequences $\left(a_{k}\right)_{k \in \mathbb{N}},\left(b_{k}\right)_{k \in \mathbb{N}}$ are monotonic and bounded. Prop. 3.8 then gives

$$
\bar{a}=\lim _{k \rightarrow \infty} a_{k} \leqslant \bar{b}=\lim _{k \rightarrow \infty} b_{k}
$$

and Prop. 3.3 (sums of limits are limits of sums) then gives

$$
|\bar{a}-\bar{b}|=\lim _{k \rightarrow \infty}\left|a_{k}-b_{k}\right|=0
$$

That is, $\bar{a}=\bar{b}=x \in[a, b]$. As f is continuous,

$$
y \leqslant \lim _{k \rightarrow \infty} f\left(b_{k}\right)=f(x)=\lim _{k \rightarrow \infty} f\left(a_{k}\right) \leqslant y,
$$

so $f(x)=y$.

Example 4.7:
i) Let $p: \mathbb{R} \longrightarrow \mathbb{R}$ be a polynomial of odd degree. Then p has a zero.
Proof:
Observe that $|p(x)| \rightarrow \infty$ for $|x| \rightarrow \infty$.
Without loss of generality $p(x) \rightarrow \infty$ for $x \rightarrow \infty$. (Otherwise consider $\tilde{p}=-p$.) As p is of odd degree, we have $p(x) \rightarrow-\infty$ for $x \rightarrow-\infty$, and the claim follows from Prop. 4.5.
ii) Every 3×3 matrix A with coefficients in \mathbb{R} has at least one real eigenvalue
Proof:
The characteristic polynomial p of A is of degree 3 , and the zeros of P are exactly the eigenvalues of A :

$$
\begin{aligned}
& A v=\lambda v \Leftrightarrow(A-\lambda 1)=0 \\
\Rightarrow & P:=\operatorname{det}(A-\lambda \mathbb{1})=0
\end{aligned}
$$

is of degree 3
(see "Linear algebra")

Corollary 4.1:
Let $f:[a, b] \rightarrow[a, b]$ be smooth. Then $\exists x_{0} \in[a, b]$ st. $f\left(x_{0}\right)=x_{0}$.
Proof:
Define the function $g(x)=x-f(x), x \in[a, b]$. Then $g:[a, b] \rightarrow \mathbb{R}$ is smooth with

$$
g(a)=a-f(a) \leq 0 \leq b-f(b)=g(b)
$$

Prop. 4.5 then implies the existence of $x_{0} \in[a, b]$ with $g\left(x_{0}\right)=0 \Leftrightarrow f\left(x_{0}\right)=x_{0}$

